China OEM 20HP/15kw Ex-Proof AC Ex Diibt4 Explosion-Proof 3 Phase Induction Electric Motor vacuum pump engine

Product Description

20HP/15kw Ex-Proof AC Ex Diibt4 Explosion-Proof 3 Phase Induction Electric Motor

  

Product Description

 

Detailed Photos

 

 

Installation Instructions

 

 

 

Certifications

 

 

FAQ

Q: Are you trading company or manufacturer?
A: We are manufacturer.

Q: What is the payment terms?
A: 30% T/T in advance, 70% before shipment or L/C at sight. 

Q: What is your delivery time?
A: standard product 20 days after receiving your L/C or T/T deposit.

Q: What is the MOQ of this item?
A: 1 units for small/medium size motors, unlimited for large ones.

Q: How long is your warranty?
A: 12 months after receiving B/L.

Q: Can we used our own brand on motors ?
A: Yes, OEM and ODM also to be provided.

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Explosion-Proof Type
Number of Poles: 2
Customization:
Available

|

induction motor

How do manufacturers ensure the quality and reliability of induction motors?

Manufacturers employ several measures and quality control processes to ensure the quality and reliability of induction motors. Here are some key steps taken by manufacturers:

  • Design and Engineering:
    • Manufacturers invest significant resources in the design and engineering of induction motors.
    • Experienced engineers use advanced computer-aided design (CAD) software to develop motor designs that meet performance specifications and industry standards.
    • Design considerations include efficient cooling, optimal winding configurations, and robust mechanical construction.
  • Material Selection:
    • Manufacturers carefully select high-quality materials that meet or exceed industry standards.
    • They use premium-grade electrical steel laminations for the motor core to minimize energy losses and maximize efficiency.
    • Copper or aluminum conductors with appropriate insulation are chosen for the motor windings to ensure reliable electrical performance.
  • Stringent Manufacturing Processes:
    • Manufacturers follow stringent manufacturing processes to ensure consistency and quality throughout production.
    • They employ advanced machinery and automation to achieve precise manufacturing tolerances and reduce human error.
    • Quality control checks are performed at various stages of the manufacturing process to identify and rectify any issues.
  • Testing and Inspection:
    • Induction motors undergo rigorous testing and inspection procedures to verify their performance and reliability.
    • Manufacturers conduct various tests, such as electrical tests, mechanical tests, insulation tests, and performance tests.
    • These tests ensure that the motors meet or exceed specified parameters for voltage, current, power factor, efficiency, torque, and speed.
    • Inspection processes involve visual inspections, dimensional checks, and verification of critical components.
  • Certifications and Compliance:
    • Reputable manufacturers ensure that their induction motors comply with relevant industry standards and regulations.
    • They obtain certifications, such as ISO 9001 for quality management systems, and adhere to specific standards like IEC (International Electrotechnical Commission) or NEMA (National Electrical Manufacturers Association).
    • Certifications and compliance demonstrate the manufacturer’s commitment to producing high-quality and reliable products.
  • Customer Feedback and Continuous Improvement:
    • Manufacturers value customer feedback and use it as a valuable source of information for continuous improvement.
    • They actively engage with customers to understand their needs and address any concerns or issues promptly.
    • Feedback helps manufacturers refine their designs, manufacturing processes, and quality control measures to enhance the overall quality and reliability of their induction motors.

By implementing these measures, manufacturers strive to ensure that their induction motors meet the highest standards of quality and reliability. Continuous improvement and adherence to industry best practices enable manufacturers to deliver products that perform consistently and reliably in a wide range of applications.

induction motor

How do induction motors handle variations in load, speed, and torque?

Induction motors are designed to handle variations in load, speed, and torque through their inherent characteristics and control mechanisms. Here’s a detailed explanation of how induction motors handle these variations:

Variations in Load:

Induction motors can effectively handle variations in load due to their unique operating principle. These motors rely on electromagnetic induction to generate a rotating magnetic field, which interacts with the rotor to produce torque. When the load on the motor changes, the motor adjusts to maintain the required torque. Here’s how induction motors handle load variations:

  • Slip: Induction motors operate at a certain slip, which is the difference between the synchronous speed and the actual rotor speed. The slip allows the motor to maintain torque when the load changes. As the load increases, the slip also increases, enabling the motor to deliver more torque.
  • Torque-Slip Characteristics: Induction motors exhibit a characteristic known as torque-slip curve. This curve shows the relationship between torque and slip. The torque-slip curve demonstrates that the motor can deliver high torque at low slip (during startup or heavy loads) and lower torque at higher slip (during light loads).
  • Stable Operation: Induction motors are designed to operate with a certain margin between the available torque and the torque required by the load. This margin allows the motor to accommodate variations in load while maintaining stable and continuous operation.

Variations in Speed:

Induction motors can handle variations in speed through the following mechanisms:

  • Synchronous Speed: The synchronous speed of an induction motor is determined by the frequency of the power supply and the number of poles in the motor. It represents the speed at which the rotating magnetic field would move if there were no slip. However, the actual speed of the rotor is always slightly less than the synchronous speed due to slip.
  • Fixed Speed: Standard induction motors are designed to operate at a fixed speed, which is determined by the power supply frequency and the number of poles. Therefore, they are often referred to as “constant-speed motors.” These motors are suitable for applications where a consistent speed is required, such as in many industrial processes.
  • Variable Speed: To handle variations in speed, induction motors can be equipped with additional control mechanisms. One common method is to use a variable frequency drive (VFD). A VFD allows precise control of the motor’s speed by adjusting the frequency and voltage supplied to the motor. By varying the frequency and voltage, the motor’s speed can be adjusted to match the requirements of the application.
  • Inertia: Induction motors have a certain amount of inertia, which provides stability and helps them resist sudden changes in speed. The inertia allows the motor to maintain a relatively constant speed even when the load changes momentarily.

Variations in Torque:

Induction motors can handle variations in torque through their inherent design and operating characteristics:

  • Starting Torque: Induction motors can provide high starting torque to overcome the inertia of the load during startup. This starting torque allows the motor to start and accelerate the load smoothly.
  • Full-Load Torque: Induction motors are designed to deliver the rated full-load torque required by the application. The full-load torque ensures that the motor can handle the normal operating conditions and provide the necessary power to drive the load efficiently.
  • Overload Capacity: Induction motors often have an overload capacity that allows them to handle temporary increases in torque beyond their rated full-load torque. This overload capacity is useful for applications that may experience occasional high torque demands or temporary overloads.
  • Controlled Torque: By using control methods such as VFDs, induction motors can have their torque adjusted and controlled precisely based on the requirements of the application. This allows for flexibility in matching the motor’s torque output to the load’s needs.

In conclusion, induction motors handle variations in load, speed, and torque through their inherent characteristics such as slip, torque-slip curve, fixed speed, and the use of additional control mechanisms like variable frequency drives. These features enable induction motors to provide stable operation, adjust their speed, and deliver the required torque to meet the demands of various applications.

induction motor

What are the common applications of induction motors?

Induction motors are widely used in various applications across different industries due to their robustness, reliability, and efficiency. Here are some common applications of induction motors:

  • Pumps: Induction motors are extensively used in water pumps for residential, commercial, and industrial applications. They provide the necessary power to drive the impeller and move water in systems such as well pumps, irrigation systems, sewage pumps, and circulation pumps.
  • Fans and Blowers: Induction motors are commonly found in HVAC (Heating, Ventilation, and Air Conditioning) systems, where they power fans and blowers. They are used in air handling units, exhaust fans, ceiling fans, and industrial fans to circulate air and provide ventilation.
  • Compressors: Induction motors play a vital role in driving compressors used in various applications. They are used in air compressors for pneumatic systems, refrigeration compressors for cooling and refrigeration units, and gas compressors for industrial processes.
  • Conveyor Systems: Induction motors provide the necessary power for driving conveyor belts in industries such as manufacturing, logistics, and mining. They enable the movement of materials and products along the conveyor lines efficiently and reliably.
  • Machinery and Equipment: Induction motors are used in a wide range of industrial machinery and equipment, including machine tools, pumps, mixers, agitators, crushers, mills, and extruders. They are essential for powering the mechanical components and ensuring smooth operation in various manufacturing processes.
  • Electric Vehicles: Induction motors are increasingly being utilized in electric vehicles (EVs) due to their efficiency and reliability. They provide the propulsion power to drive the wheels, allowing EVs to be environmentally friendly and energy-efficient alternatives to internal combustion engine vehicles.
  • Household Appliances: Induction motors are found in numerous household appliances, including refrigerators, washing machines, dishwashers, vacuum cleaners, and kitchen appliances. They are used to drive the motors in these appliances, enabling their essential functions.
  • Industrial Processes: Induction motors are employed in various industrial processes, such as pumps for water treatment plants, mixers for food processing, agitators for chemical industries, and crushers for mining operations. They are crucial for driving the necessary mechanical components and ensuring the smooth operation of these processes.

These are just a few examples of the wide range of applications where induction motors are commonly used. Their versatility, efficiency, and ability to handle heavy loads make them indispensable in industries and everyday life.

China OEM 20HP/15kw Ex-Proof AC Ex Diibt4 Explosion-Proof 3 Phase Induction Electric Motor   vacuum pump engine	China OEM 20HP/15kw Ex-Proof AC Ex Diibt4 Explosion-Proof 3 Phase Induction Electric Motor   vacuum pump engine
editor by CX 2023-11-17